Maximal Strip Recovery Problem with Gaps: Hardness and Approximation Algorithms

نویسندگان

  • Laurent Bulteau
  • Guillaume Fertin
  • Irena Rusu
چکیده

Given two comparative maps, that is two sequences of markers each representing a genome, the Maximal Strip Recovery problem (MSR) asks to extract a largest sequence of markers from each map such that the two extracted sequences are decomposable into non-intersecting strips (or synteny blocks). This aims at defining a robust set of synteny blocks between different species, which is a key to understand the evolution process since their last common ancestor. In this paper, we add a fundamental constraint to the initial problem, which expresses the biologically sustained need to bound the number of intermediate (non-selected) markers between two consecutive markers in a strip. We therefore introduce the problem δ-gap-MSR, where δ is a (usually small) non-negative integer that upper bounds the number of non-selected markers between two consecutive markers in a strip. We show that, if we restrict ourselves to comparative maps without duplicates, the problem is polynomial for δ = 0, NP-complete for δ = 1, and APX-hard for δ ≥ 2. For comparative maps with duplicates, the problem is APX-hard for all δ ≥ 0.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact and approximation algorithms for the complementary maximal strip recovery problem

Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as G ∗ 1 and G∗ 2 , can be partitioned into the same set of maximal substrings of length greater than or equal to two. Such substrings can occur in the reversal and n...

متن کامل

Hardness of approximation for orthogonal rectangle packing and covering problems

Bansal and Sviridenko [4] proved that there is no asymptotic PTAS for 2-dimensional Orthogonal Bin Packing (without rotations), unless P = NP. We show that similar approximation hardness results hold for several 2and 3-dimensional rectangle packing and covering problems even if rotations by ninety degrees are allowed. Moreover, for some of these problems we provide explicit lower bounds on asym...

متن کامل

An Improved Approximation Algorithm for the Complementary Maximal Strip Recovery Problem

Given two genomic maps G1 and G2 each represented as a sequence of n gene markers, the maximal strip recovery (MSR) problem is to retain the maximum number of markers in both G1 and G2 such that the resultant subsequences, denoted as G ∗ 1 and G ∗ 2, can be partitioned into the same set of maximal strips, which are common substrings of length greater than or equal to two. The complementary maxi...

متن کامل

Inapproximability of Maximal Strip Recovery: II

In comparative genomic, the first step of sequence analysis is usually to decompose two or more genomes into syntenic blocks that are segments of homologous chromosomes. For the reliable recovery of syntenic blocks, noise and ambiguities in the genomic maps need to be removed first. Maximal Strip Recovery (MSR) is an optimization problem proposed by Zheng, Zhu, and Sankoff for reliably recoveri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009